A stochastic multiscale framework for modeling flow through random heterogeneous porous media

نویسندگان

  • Baskar Ganapathysubramanian
  • Nicholas Zabaras
چکیده

Flow through porous media is ubiquitous, occurring from large geological scales down to the microscopic scales. Several critical engineering phenomena like contaminant spread, nuclear waste disposal and oil recovery rely on accurate analysis and prediction of these multiscale phenomena. Such analysis is complicated by inherent uncertainties as well as the limited information available to characterize the system. Any realistic modelling of these transport phenomena has to resolve two key issues: (i) the multi-length scale variations in permeability that these systems exhibit, and (ii) the inherently limited information available to quantify these property variations that necessitates posing these phenomena as stochastic processes. A stochastic variational multiscale formulation is developed to incorporate uncertain multiscale features. A stochastic analogue to a mixed multiscale finite element framework is used to formulate the physical stochastic multiscale process. Recent developments in linear and non-linear model reduction techniques are used to convert the limited information available about the permeability variation into a viable stochastic input model. An adaptive sparse grid collocation strategy is used to efficiently solve the resulting stochastic partial differential equations (SPDEs). The framework is applied to analyze flow through random heterogeneous media when only limited statistics about the permeability variation are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic mixed finite element heterogeneous multiscale method for flow in porous media

A computational methodology is developed to efficiently perform uncertainty quantification for fluid transport in porous media in the presence of both stochastic permeability and multiple scales. In order to capture the small scale heterogeneity, a new mixed multiscale finite element method is developed within the framework of the heterogeneous multiscale method (HMM) in the spatial domain. Thi...

متن کامل

A stochastic heterogeneous multiscale method for porous media flow

A new multiscale algorithm is introduced based on the framework of the heterogeneous multiscale method. The mixed finite element method used ensures continuity of the flux within the entire domain. This method is shown to be free of “resonance error” and uses less memory than the mixed multiscale finite element method. To account for the highstochastic dimensionality of the permeability field, ...

متن کامل

Stochastic analysis of flow in a heterogeneous unsaturated-saturated system

[1] In this study we develop a stochastic model for transient unsaturated-saturated flow in randomly heterogeneous media with the method of moment equations. We first derive partial differential equations governing the statistical moments of the flow quantities by perturbation expansions and then implement these equations under general conditions with the method of finite differences. The stoch...

متن کامل

Adaptive Variational Multiscale Methods for Multiphase Flow in Porous Media

We aim in this paper to give a unified presentation to some important approaches in multi-phase flow in porous media within the framework of multiscale methods. Thereafter, we will present a modern outlook indicating future research directions in this field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009